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ABSTRACT
Predictive Coding (PC) is picking up momentum as a biologically plausible

alternative to Backpropagation. In this work, we implement PC networks for

regression and classification tasks and investigate the impact of dropout and

different PC activation initialization techniques on their training dynamics.

Our results show that dropout in PC acts similarly to BP, and initialization

techniques other than the standard forward initialization lead to smoother

training and smaller network weights, hence also acting as a regularizer.

1 INTRODUCTION
Deep Learning with Backpropagation (BP) has shown increasing

performance over the past decade, resulting in significant progress

in a range of research areas, including Reinforcement Learning [26],

Computer Vision [14], and Natural Language Processing [4, 6].

As Artificial Intelligence (AI) has progressed towards human

level performances, there has been a growing interest in biological

plausibility of Artificial Neural Networks (ANNs). This shift in

perspective has led to biologically grounded approaches that could

overcome limitations of the classical BP algorithm, including the

implausible global function differentiation and its slow propagation

of error signals through time.

One example is Predictive Coding (PC) [23, 29], a theory of brain

computation from Neuroscience. In its adaptation to ANNs [31],

each artificial neuron only interacts with its parents in the com-

putational graph by predicting their activations, offering localized,

highly parallelizable and more plausible computations from a bio-

logical perspective. PC appears to be a strong alternative to BP, as

it has been shown to converge towards it under certain conditions

[27], and can be adapted to arbitrary network topologies.

Despite these advantages, PC is a relatively young and under-

studied field in Machine Learning (ML). For example, regularization

techniques that are used in many state-of-the-art BP models and

have shown a considerable impact on the generalization capability

[8, 15] have not been extensively explored for PC networks yet.

In this work, we implement simple to use and relatively efficient

PC networks, capable of tackling regression and classification tasks,

alongside corresponding standard BP neural networks with compa-

rable architectures. We then exploit them to investigate whether

regularization has positive effects on the generalization capability

of PC networks, exploring the impact of dropout and different PC

neuron initialization techniques (for which we formulate a hypoth-

esis linking initialization to regularization) on their generalization

power. The empirical evidence gathered on regression (function

approximation) and classification (handwritten digit identification)

tasks suggest that even though the generalization performance is

not improved by dropout in our experiments, it has an effect on PC

networks similar to that for BP networks. Our results also show

that initialization techniques different from forward reduce the

𝐿2-norm of the PC model’s weights, indicating that they also have

regularizing effects.

In the following sections, we briefly outline existing related

works (§2), the PC framework (§3) and our hypothesis (§4). Then,

we present our experimental setting (§5) and results (§6). Finally,

we conclude with some remarks on our work (§7).

2 RELATEDWORK
As pointed out by Bishop [2], there exist two ways of preventing

overfitting, and thereby increasing generalizability in ANNs.

Firstly, a greater degree of generalization can be achieved by

reducing the complexity of the network through a decrease in

the number of its free parameters (structural stabilization). One

way of doing this is by applying dropout [17, 20, 30], an established

technique to regularize training in traditional ANNs. Dropoutworks

by randomly setting a certain proportion of network weights to

zero, thereby forcing other weights to make up for the loss caused

and hence contribute to the prediction. Eventually, this enforces a

more even distribution of contributions among neurons [30]. To

our best knowledge, no prior work on PC investigated dropout yet.

Secondly, networks can be regularized by restricting the param-

eter space, as large weights tend to cause sharp transitions in the

node functions and thus large changes in output for small changes

in the inputs [24]. This is usually achieved in traditional ANNs

using an additional penalty term in the error function, as for ex-

ample in Thikonov regularization [1]. We speculate that a similar

behavior could be obtained in PC networks using specific initializa-

tion techniques for the guessed activations (see Section 4). While

current implementations of PC networks [18, 19, 22, 25] seem to

exclusively focus on forward initialization (meaning the neuron

activations are initialized by performing an initial forward pass

through the network [28]), Millidge et al. [19] posits that future

work on PC should relax this constraint, as it could lead to potential

improvements of PC over BP.
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Figure 1: Local dependencies of PC error signals.



3 PREDICTIVE CODING
Predictive Coding as a framework for ML has its grounding in

Neuroscience, with a strong empirical support as a theorymodelling

the brain [3, 9, 32]. Other than the benefits already mentioned, it

has been shown to help tackle catastrophic forgetting [16], to be

superior to other architectures in associative memory, and has

since been implemented for CNNs, RNNs, and LSTMs [25], and

even simple transformer networks [22].

In PC, the computation graph is augmented by introducing error

nodes 𝜖 = | | ®𝑥𝑙 − ˆ®𝑥𝑙 | |22, which contain the squared difference between
predictions

ˆ®𝑥𝑙 and true activations ®𝑥𝑙 . The sum of these errors can

also be interpreted as the free energy of the system [10], which we

use as the loss function for PC:

L =

𝐿∑︁
𝑙=1

𝜖𝑙 =

𝐿∑︁
𝑙=1

| | ®𝑥𝑙 − ˆ®𝑥𝑙 | |22 (1)

The version of the PC algorithm we use to train our models is

based on that proposed by Millidge et al. [18] and is presented in

Algorithm 1. A key difference in our implementation is that we

allow for different ways of initializing the activations, described

in Section 5.3, instead of requiring forward initialization. The al-

gorithm can be outlined as follows. First, the input activation ®𝑥0
is fixed to the input, and the output activation is fixed to the label

𝑦 (Line 6). Then all the other activations are initialized (Lines 7-8).

Learning in PC is comprised of two phases, relaxation and weight

update. In the first phase, we repeatedly compute the energy 𝜖𝑙 for

each layer, sum them to obtain the total energy L, and optimize

the activations to minimize it while keeping the weights fixed. Af-

terwards, activations are updated using gradient descent (or more

advanced optimizers, as outlined in Section 5.3) for a number of 𝑁

iterations, or until convergence (Lines 9-15). Finally, for the second

phase, a single update step is performed on the weights
®𝜃𝑙 while

keeping the activations fixed (Lines 16-17), further minimizing the

total energy.

Algorithm 1 Predictive Coding Training

1: Data: Dataset D = X, y
2: 𝑁 ←− number of iterations

3: 𝐿 ←− number of layers

4: def Training(D)

5: for 𝑋,𝑦 ∈ D do
6: ®𝑥0, ®𝑥𝐿 ←− 𝑋,𝑦

7: for 𝑙 = 1 . . . 𝐿 − 1 do
8: ®𝑥𝑙 ←− Initialize()

9: for 𝑡 = 1 . . . 𝑁 do
10: for 𝑙 = 1 . . . 𝐿 do
11:

ˆ®𝑥𝑙 ←− 𝑓 ( ®𝑥𝑙−1, ®𝜃𝑙 )
12: 𝜖𝑙 ←− || ®𝑥𝑙 − ˆ®𝑥𝑙 | |22
13: L ←− ∑𝐿

𝑙=1
𝜖𝑙

14: for 𝑙 = 1 . . . 𝐿 − 1 do
15: ®𝑥𝑡+1

𝑙
←− ®𝑥𝑡

𝑙
+ 𝜂𝑡𝑥 𝜕L

𝜕 ®𝑥𝑙 𝑡

16: for 𝑙 = 1 . . . 𝐿 do
17:

®𝜃𝑙 ←− ®𝜃𝑙 + 𝜂𝜃 𝜕L
𝜕 ®𝜃𝑙

As already mentioned, this training algorithm is highly paral-

lelizable assuming that the predictions at each layer are fixed at

the values assigned during the feedforward pass throughout the

convergence step [18]. In fact, the error signals only propagate in

local neighbors, as shown in Figure 1. This is further shown in our

derivation of the gradients for L, included in Appendix A.

4 MOTIVATION
In this section, we present a more formal argumentation to back

our choice of experimenting with dropout and different PC initial-

ization methods. For what concerns dropout, we expect it to restrict

the expressivity of the model by reducing the number of free param-

eters, as it happens for BP, and hence reducing the generalization

error. This is expected to happen for forward initialization, since

the two paradigms are asymptotically equivalent [18] in this setting.

The behavior with other initialization techniques, however, has to

be empirically verified, and no previous assumptions can be made.

On the other hand, our hypothesis regarding different PC ini-

tialization techniques is that they might positively affect the value

range of the weights, implicitly shrinking them and hence regu-

larizing the network. When using forward initialization, all the

energy is initially concentrated in the last layer and is equal to the

squared difference between the predicted output and the ground

truth [18]. For the previous layers, in contrast, the error signal is

zero, as they are initialized to their forward values. Hence, the er-

ror signals are not evenly distributed and there will only be small

changes between the initial and the converged energy distribution.

If, on the other hand, the activations are initialized with either with

0 or randomly (e.g. sampled from a normal distribution), all the

neurons will converge to equilibrium more uniformly, because the

error signal will be more evenly spread across the network. If the

activations are more equally scattered, this may also lead to the

weight updates being more evenly distributed, which then would

have the desired effect of preventing overly large weights, hence

regularizing the network [2].

5 METHODS
This section describes how experiments are conceptualized and

conducted to analyze our hypothesis. Due to the limited computa-

tional resources available for our experiments, we only experiment

with two simple supervised regression and classification tasks, that

allow us to investigate our hypothesis on small models.

5.1 Datasets
For the regression task, we generate a total of 800 training and 200

test observations from the noisy sinusoidal function:

𝑓 (𝑥) = sin(1 + 𝑥2) + 𝜖 with 𝜖 ∼ N(0, 0.1) 𝑥 ∈ [0, 4]

where the standard Gaussian noise is used to test the ability of the

model to grasp the underlying structure of the data. The input and

output data are scalar, which allows for a small network with few

parameters and reasonable convergence time. For the classification

task, we use the MNIST dataset [5] which contains 60,000 training

images and 10,000 testing images of handwritten monochromatic

digits, each of size 28x28 pixels. The small input dimensions and

output size of 10 allow the use of a shallow linear network as well.
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5.2 Models
Considering the limited complexity of the tasks and datasets, we

opt to use simple fully-connected networks built in PyTorch [21].

We implement BP as well as PC models in order to compare the

performance and training dynamics where possible.

BP Models For the regression task, the model consists of two

hidden layers with 1024 neurons each, using ReLU activations and

dropout. The output layer consists of a single neuron, with no

activation function and no dropout. The model is optimized using

a Mean Squared Error (MSE) loss. For the classification task, the

model consists of a single hidden layer with 50 neurons, using ReLU

activations and a dropout. The output layer consists of 10 neurons,

that use a LogSoftmax activation function. The model is optimized

using a Cross-Entropy (CE) loss.

PCModels The PCmodels are implemented like their BP equiva-

lents, with the same number of linear layers, widths, and activation

functions. To train the models using Algorithm 1, we develop the

following additional components:

• PC Layer, which handles the previous layer’s activation

guessing and computes the error signals used to train the

model; a visualization is included in Appendix B.

• PC Dropout, which allows the dropout mask to be consistent

during the energy descent phase for each batch.

• PC Softmax (extension of PC Layer) which ensures that the

guessed output values always sum up to 1.

The definition of these components allows us to build a flexible and

generalizable framework, where the adaptation of a model to the

PC setting only requires an addition of a limited amount of layers.

5.3 Experiments
We perform three sets of experiments, one on general performance,

one on dropout and one on initialization. For all experiments, we

take the median over five different PyTorch seeds to reduce noise.

We train the regression models for 500 epochs and the classification

models on 200 epochs, both with early stopping.

PC Implementation Performance: In order to validate our PC

implementation and to find good optimizers and hyperparameters

for subsequent experiments, we compare the performance of our PC

network to a corresponding BP network with no dropout and using

forward initialization. In order to allow for the best possible training

settings, we do Bayesian hyperparameter search, optimizing on the

test loss. We investigate Adam [13], Adagrad [7], RMSProp [12]

and Stochastic Gradient Descent (SGD) with momentum for the

weights’ optimizer of the linear layers. For the PC activations, we

only investigate Adam and BP with momentum to keep the size of

the hyperparameter space manageable. We perform a total of 400

runs per optimizer and model combination.

Dropout Experiments: For the following experiments, we se-

lect and fix the best weight and activation optimizer combination

with the highest-performing hyperparameters for the PC network

and select the corresponding weight optimizer for the BP trainings.

This allows us to compare the training dynamics between PC and

BP models using a consistent optimizer setting, while analyzing

the change in performance between the PC networks only based

on one free parameter. We test dropout with dropout probabilities

ranging between [0.0, 0.9], with steps of 0.1.

PC initialization experiments: Thirdly, we test four different
techniques for initializing the activations of the PC neurons:

• ‘Forward’ initializes the activation to the forward values.

• ‘Zeros’ initializes them as 0.

• ‘Normal’ samples them from a standard normal distribution.

• ‘Xavier Normal’ following [11] with a gain value of 1.

6 RESULTS AND DISCUSSION
PC Implementation Performance:We find that the PC model

with forward initialization converges towards the BP model in

terms of both training and test loss. BP against PC performances

on the MNIST classification dataset is shown in Figure 2 (analog for

sine can be found in Figure 8 in Appendix C). This suggests that PC

models can achieve similar or even better performance compared

to BP models on certain tasks given appropriate hyperparameter

tuning, confirming our expectations and validating results and con-

clusions from Millidge et al. [18]. Based on the test loss, the best

performing optimizers for the classification task were RMSProp for

the weight optimization and SGD with momentum for the conver-

gence optimization. As for the regression task, the best performing

weight optimizer was Adam, while SGD with momentum proved

to be the best optimizer for the convergence step. In the following

experiments, these optimizers were fixed.

Figure 2: Train loss (blue) and test loss (green) of BP (dashed) and
PC (full) model on MNIST data. Weight optimizer (both): RMSProp,
activation optimizer (PC): SGD with momentum.

Dropout Experiments: As shown in Figure 4, a clear resem-

blance between the dependency of dropout on the test error can

be observed between PC and BP models, even though dropout did

not actually improve the generalization capabilities in this case

for either model type. This might be explained by the hyperpa-

rameters being optimized on a dropout of zero in the previous

experiments. For the MNIST classification task, the test errors for

different dropout rates are generally similar between PC and BP.

We observe a few outliers for higher dropout values in the PC

model, indicating that with high dropout, PC model performance

becomes more erratic than for the BP equivalent (see Appendix

6). Our results indicate that using dropout has a similar impact on

the performance between BP and PC models, and with the right

choice of hyperparameters and model we would expect it to have a

positive impact on the generalization capability for PC networks

as it usually has for BP.
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Figure 3: Test error for PC regression for different initializations

Figure 4: Test error for different dropout rates of BP and PC regres-
sion models on the sine dataset

PC initialization experiments: The results shown in Figure 3

highlight that in our experiments, forward initialization strongly

outperforms all the other initialization techniques in terms of test

loss, supporting its widespread use as the way to initialize PC acti-

vations in the literature. While different techniques have a worse

test error than forward, Xavier and Zeros initialization do affect

the 𝐿2 norm of the model weights, leading to weight shrinkage as

shown in Figure 5. Considering the regularization effect of weight

shrinking, this seems to support our hypothesis presented in Sec-

tion 4. Given that we only tuned the hyperparameters on forward

initialization due to resource constraints, it is likely that they are

not optimal for the other initialization regimes, and hence with

more hyperparameter tuning or a different model architecture, this

regularization might benefit the test accuracy compared to forward

initialization.

Figure 3 also shows that forward initialization leads to more

fluctuation in the test error, while the other initialization schemes

show a smoother loss landscape, further supporting that they might

be acting as a regularizer.

Init. Technique Train Error Test Error
Normal 0.3862 0.3391

Xavier 0.2467 0.2165

Zeros 0.2424 0.2137

Forward 0.0753 0.0755

Table 1: Top Sine Train Error and Test Error performance of
PC networks as a function of the initialization technique

Figure 5: Effect of activation initialization on weight shrinkage

Figure 6: Classification test error by dropout rate for BP and PC

7 CONCLUSION
Our project’s focus was finding and testing regularization tech-

niques in Predictive Coding networks. For this, we implemented

PC neural networks for classification and regression in PyTorch, as

well as architecturally similar BP neural networks. We then lever-

aged our framework to study the effect of dropout and different

activation initialization techniques as regularizers in PC networks.

At the time of writing, there are, to our knowledge, no other PC

frameworks that include dropout and different methods of initial-

ization, so there are no baseline models with which to compare

our findings.Therefore, one of our main contributions is adding

our flexible and extendable PyTorch implementation for others to

build on. First, we validated our implementation by conducting a

series of experiments to verify that our PC networks learned simi-

larly well compared to equivalent models trained with BP. We then

investigated dropout in PC networks, finding that it has a similar

effect on PC and BP networks, though in neither it improves the test

accuracy. This could be explained by the lack of hyperparameter

tuning and the small model sizes. For initializing the PC models’

neuron activations, forward initialization technique consistently

outperformed other initializations, though this is likely due to in-

sufficient hyperparameter optimization as well. However, we found

that some of the data-independent initializations contributed to re-

ducing the 𝐿2 norms of the weights and smoothing learning curves,

indicating that they too act as regularizers. In future work further

experiments could yield better results through optimizing hyper-

parameters for the different initialization techniques, and using

more suitable training data that induces overfitting when training

without regularization.
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A PC GRADIENTS DERIVATION
In this Appendix section, we include our derivation of the gradients

of the total energy function L used in training, for both activations

𝑥𝑙 and weights 𝜃𝑙 . Firstly, we define the total energy function to be

the sum over the energies 𝜖𝑙 (error signals) of all layers as follows

L =
1

2

𝐿∑︁
𝑙=1

𝜖𝑙 =
1

2

𝐿∑︁
𝑙=1

(𝑥𝑙 − 𝑓 (𝜃𝑙𝑥𝑙−1))2

where 𝑓 is the activation function, 𝜃𝑙 the weight of layer 𝑙 and 𝑥𝑙−1
the activation guessed in the previous layer. The gradients of the

loss L with respect to the activations 𝑥𝑖 can be then derived as

follows

𝑑L
𝑑𝑥𝑖

=
𝑑

𝑑𝑥𝑖

[
1

2

𝐿∑︁
𝑙=1

(𝑥𝑙 − 𝑓 (𝜃𝑙𝑥𝑙−1))2
]

=
1

2

𝑑

𝑑𝑥𝑖

[
(𝑥𝑖 − 𝑓 (𝜃𝑖𝑥𝑖−1))2 + (𝑥𝑖+1 − 𝑓 (𝜃𝑖+1𝑥𝑖 ))2

]
=

1

2

𝑑

𝑑𝑥𝑖
[𝑥2𝑖 + 𝑓 (𝜃𝑖𝑥𝑖−1)

2 − 2𝑥𝑖 𝑓 (𝜃𝑖𝑥𝑖−1)

+ 𝑥2𝑖+1 + 𝑓 (𝜃𝑖+1𝑥𝑖 )
2 − 2𝑥𝑖+1 𝑓 (𝜃𝑖+1𝑥𝑖 )]

= 𝑥𝑖 − 𝑓 (𝜃𝑖𝑥𝑖−1) + 𝑓 (𝜃𝑖+1𝑥𝑖 ) 𝑓 ′ (𝜃𝑖+1𝑥𝑖 )𝜃𝑖+1
− 𝑥𝑖+1 𝑓 ′ (𝜃𝑖+1𝑥𝑖 )𝜃𝑖+1

= (𝑥𝑖 − 𝑓 (𝜃𝑖𝑥𝑖−1)) + (𝑓 (𝜃𝑖+1𝑥𝑖 ) − 𝑥𝑖+1) 𝑓 ′ (𝜃𝑖+1𝑥𝑖 )𝜃𝑖+1
= 𝜖𝑖 − 𝜖𝑖+1 𝑓 ′ (𝜃𝑖+1𝑥𝑖 )𝜃𝑖+1

which only depends on previous and successive layers parameters.

In the same way, we can derive the gradients of the loss L with

respect to the weights 𝜃𝑖 as

𝑑L
𝑑𝜃𝑖

=
𝑑

𝑑𝜃𝑖

[
1

2

𝐿∑︁
𝑙=1

(𝑥𝑙 − 𝑓 (𝜃𝑙𝑥𝑙−1))2
]

=
1

2

𝑑

𝑑𝜃𝑖

[
(𝑥𝑖 − 𝑓 (𝜃𝑖𝑥𝑖−1))2

]
=

1

2

𝑑

𝑑𝜃𝑖

[
𝑥2𝑖 + 𝑓 (𝜃𝑖𝑥𝑖−1)

2 − 2𝑥𝑖 𝑓 (𝜃𝑖𝑥𝑖−1)
]

= 𝑓 (𝜃𝑖𝑥𝑖−1) 𝑓 ′ (𝜃𝑖𝑥𝑖−1)𝑥𝑖−1 − 𝑥𝑖 𝑓 ′ (𝜃𝑖𝑥𝑖−1)𝑥𝑖−1
= (𝑓 (𝜃𝑖𝑥𝑖−1) − 𝑥𝑖 ) 𝑓 ′ (𝜃𝑖𝑥𝑖−1)𝑥𝑖−1
= −𝜖𝑖 𝑓 ′ (𝜃𝑖𝑥𝑖−1)𝑥𝑖−1

which as well only depends on previous and successive layers pa-

rameters, hence definitely proving the locality of the updates.

B PCLAYER VISUALIZATION
In this Appendix section, we include a visualization of our PCLayer

component that we introduced in this project, depicted in Figure 7.
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Figure 7: PC layer visualization.

Here, 𝜇 = 𝑓 (𝑃) are the forward values from the previous layer in

the computational graph, for which the PC layer is guessing the ac-

tivation functions, while 𝑥 are the guessed activations (propagated

forward to the following layers of the network) and the 𝜖 are the

error signals (differences between the true and guessed activations,

used to train the network).

C SINE BP VS. PC TRAINING DYNAMICS

Figure 8: Sine BP vs. PC training dynamics
Sample of a learning curve for sine BP and PC respectively, to

show that our PC implementation converges to BP. In this case the

weights of the two samples you see have been set with RMSProp

and for PC the optimization was performed with momentum.

D AUGMENTED OUT-OF-DISTRIBUTION
MNIST

This section describes a method we used in our experiments, but left

out from our results due to convergence problems and limited time

to fine-tune the models, likely due to limited network parameters

and training data.

In order to measure the generalization power of the classification

models on a similar but different domain, we tested them on out-of-

distribution data, which is less likely to resemble anything already

seen during training. The images from the test dataset are aug-

mented by randomly adding Gaussian noise, swirling the center

of the image by a radius of five pixels, adding sinusoidal oscilla-

tion to the image row coordinates, and/or reducing the resolution.
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Visual examples of the augmentations can be found in Figure 9.

The first row depicts ten samples of the original MNIST data. In

the second row, these samples are randomly augmented by adding

Gaussian noise, swirling the center of the image by a radius of

five pixels, adding sinusoidal oscillation to the image row coordi-

nates, and/or reducing the resolution. In future experiments, this

approach can be helpful to test the generalization capabilities of

the network cross-domain, additionally to the test dataset, which

tests the generalization capabilities within the same data domain.

Figure 9: MNIST Augmentation for Out-of-Distribution data.

7


	Abstract
	1 Introduction
	2 Related Work
	3 Predictive Coding
	4 Motivation
	5 Methods
	5.1 Datasets
	5.2 Models
	5.3 Experiments

	6 Results and Discussion
	7 Conclusion
	References
	A PC gradients derivation
	B PCLayer visualization
	C Sine BP vs. PC training dynamics
	D Augmented Out-of-Distribution MNIST

