Overcoming Theoretical Limitations of Soft Attention

Advanced Formal Language Theory Project Report, Spring 2022

Franz Nowak, Giacomo Camposampiero, Clemente Pasti, and Bernhard Hilmarsson
ETH Ziirich - Swiss Federal Insitute of Technology
{fnowak, gcamposampie, cpasti, bhilmarsson}@ethz.ch

1 Introduction

Transformers were initially proposed by Vaswani
et al. (2017) and they rapidly arose in popularity
in the NLP community as they outperformed previ-
ous state of the art techniques in a variety of tasks.
While the ability of previous techniques to recog-
nize different classes and types of formal languages
has been extensively studied for more that 20 years
(Gers and Schmidhuber, 2001; Weiss et al., 2018),
relatively little work exists on the ability of trans-
formers to recognize formal languages.

In 2020, Hahn showed that transformers cannot
recognize the languages PARITY and 2DYCK for
asymptotically large input sizes. The proof rests
on the fact that a transformer’s output depends on
a single input symbol by a factor of O(%) This
makes it very hard to solve recognition tasks that
depend on a single position. Bhattamishra et al.
(2020a) proposed an architecture that can recognize
1DYCK, a simpler version of 2DY CK, with perfect
accuracy for any finite n using hard attention (Xu
et al., 2015).

Chiang and Cholak (2022) explored this further
and showed that transformers with hand-crafted
weights do exist that recognize FIRST and PARITY
with accuracy 1 for any finite input length n, using
soft attention.

FIRST = {w € ¥* | w; =1}
PARITY = {w € ¥* | w has odd number of 1s}

Moreover, layer normalization can be used to get
the cross entropy arbitrarily close to 0.

In this work, we consider two other formal lan-
guages: The regular language ONE and the context
free language PALINDROME.

ONE = {w € ¥* | w contains exactly one 1}
PALINDROME = {w € ¥* | w is palindrome }

We also show how specifically designed trans-
former architectures can recognize them with per-
fect accuracy for any input size n.

The remainder of this manuscript is organized
as follows: In Section 2 we introduce our notation
and give details on the transformer architecture we
used. In Section 3, we derive the custom trans-
former weights that can recognize ONE and PALIN-
DROME with perfect accuracy. In practice, we find
through experiment that the maximum length for
which PALINDROME can be recognized perfectly
is limited by a problem of floating-precision. In
Section 4 we go over the experimental results for
the exact and the learned solutions. To run our
experiments, we created custom datasets for all
the languages we study. For details on the gener-
ation of the datasets, see Appendix B. In Section
5 we discuss the limitations of our approach, and
finally in Section 6 we draw our conclusions and
suggest possible future routes of improvement for
our work.

2 Background

2.1 Notation

For ease of comparison, we closely follow the no-
tation of Chiang and Cholak (2022), using I[P] as
the indicator function which is 1 if P is true and O
otherwise, and 0" for the m x n O-matrix.

We define n as the length of the sequence plus
any CLS or EOS tokens. The input is a string
w € X%, with the i-th position of w being denoted
by w; fori € [0, ...,n — 1].

2.2 Transformers

Like Chiang and Cholak (2022) and Hahn (2020),
we use transformer encoders with sigmoid output
layer (except where otherwise specified) and use
the output at position 0 as the classification result.

The transformers are defined in the same way as in
the original paper by Vaswani et al. (2017), except
we define our own positional encodings as arbitrary
functions on the position and length of input.

We use encoder-only transformers, where each
encoder layer consists of a stack of L encoder lay-
ers, which in turn have a self-attention layer with H
heads, followed by a feedforward neural network.

Each input vector a% is the sum of a word em-
bedding WE and positional embedding PE for char-
acter at position ¢:

WE: Y — R?
PE: N — R?
a%! =WE(w;) + PE(i)

The attention function is standard scaled dot-
product attention:

Att : R x R4 x R4 5 R

K
Att(q, K, V) = VT softmax —a

Vd

Layer [€ [1,..., L] with attention heads h €
[1,..., H] is defined as follows, where lowercase
and uppercase boldface letters are vectors and ma-
trices with dimensions d and d x d, respectively:

g = Wlhgl-1i

Kl — [WK,l,hal—l,O WK,l,hal—l,n—l}T

Vih — [WV,l,hal—l,O WV,l,hal—l,n—l}T

H

cl,i _ ZAtt(ql,h,i7 Kl’h, Vl,h) + al—l,i
h=1

hl,i — maX(O, WF,l,lcl,i + bF,l,l)

al,i — WF,l,Zhl,i + bF,l,Z + Cl,i

3 Exact Solutions

In this section, we give specific transformer ar-
chitectures that recognize each of the introduced
formal languages with accuracy 1. As they are
designed to recognize a specific formal language,
they do not need to be trained.

For readability, we write the vectors without
padding, however they are in fact padded to length
d where d is the model/embedding dimension.

3.1 Transformer for ONE

Our first exact transformer recognizes the language
ONE as defined above. It will have just L = 1
encoder layer and H = 1 attention head. The
embedding dimension is d = 7.

The idea for the ONE exact transformer is sim-
ilar to that for the exact solution of FIRST and
PARITY by Chiang and Cholak (2022). We also
have prepended a CLS token in position ¢ = 0.

3.1.1 Embeddings

The word and position embeddings are fixed (not
learned) as follows:

WE(Q) = WE(1) =

WE(CLS) = PE(i) =

c~roco oo~

I3[« O OO oo~k O

where the position embedding is just a standard rel-
ative position encoding that indicates the position
as a fraction of the total length.

Thus, the full encoding of word wj is:

Q0 — | Mwi=1]

)

n

3.1.2 Encoder

The only attention layer of the transformer does
not attend to anything and is just used to obtain
expressions for k and 1, averaged by n:

WC =0

WK =0
04)(4
wY=101 0 0
00 1 0

With the residual connection, we get:
[]I[wl- = 0]
]I[wi = 1]

SIS xS |

Now we want to compute I[k = 1]. We do this,
in the same way as Chiang and Cholak (2022), by
constructing a piecewise linear function that is 1 iff
k = 1. For this, the FFNN uses two layers. The
first layer has the following parameters:

00001 -2
1 -1
1 0
0 1

whl =

o O O

0
0
0

o O O
o O O

bl =0

Then with RELU activation, the output is:

max(0,k — 2)
hli'_'}' rnax(O,k —'1)
~ n | max(0,k)
1

And the second layer combines them to get
Ik =1]:
06X4
1 -2 1
b2 =0

F2 _
W= —0.5

Note how the fourth dimension of h' is used as
a bias term by the second layer, since this way the
bias is scaled by % After the residual connection,
we have the following at position 0 (at CLS):

1,0 _

o
|
wIFSFEO = O O

where s is given by
I[k=1]-0.5
§= —
n

which is positive if and only if I[[k = 1] evaluates
to 1.

3.1.3 Output Layer

Finally, the output layer just selects the entry in
the last dimension and transforms it via a sigmoid
activation function:

WCe=[0 00000 1 b?=0
1

YUY exp(—s)

So the output is greater than % for K = 1 and
smaller otherwise.

3.2 Transformer for PALINDROME

The transformer that exactly solves PALINDROME
is more non-standard than that for ONE in that it
uses an indicator function as activation in the output
layer instead of a sigmoid activation. We use L = 2
encoder layers with H = 2 attention heads in the
second layer. The embedding dimension is d = 11.

3.2.1 Embeddings

The word embeddings are the same as for ONE,
except for this problem the end of the input se-
quence is required to be marked by an EOS token,
for which we add another word embedding:

1 0

0 1

0 0

WE(0) = 8 WE(1) = 8
0 0

0 0

0] 0]

o o

0 0

1 0

WE(CLS) = 8 WE(EOS) = (1)
0 0

0 0

0] 0]

The position embedding is rather non-standard,
introducing markers for being in the left and right
halves of the sequence (similar to how Chiang and
Cholak’s (2022) position encoding for FIRST has
an indicator function to mark whether ¢ = 1):

0
0
0
PE(1) = ?
?

n

==

]
I

Note that for even sequence lengths n, the sets
{ili < 251} and {i[i > 271} are disjoint, while
for odd n they both contain the center position

- n—1
Z—72 .

| N
—_

IV IA

n

N, S

1f;
1fi

~ ‘

The encoding of word wj is:

3.2.2 First Encoder Layer

The first attention layer does nothing, i.e. W1 =
WKL = WVl =0, and the first FFNN computes
two new components, one that checks if at position
1 we have a 1 and the position is in the first half,
and another that checks if it is a 1 in the second
half:

The second layer just projects the result to the cur-
rently empty dimensions after the positional encod-
ing:

08X2
whL2 — |1 0
10 1
bF’l’Z -0
[I[w; = 0] 1
Ifw; = CLS]
I[w; = EOS]
14 _ i
a = n—i—1
Ili < 23]
1i > 2]
I < 252 Aw; = 1]
H[i > nT—l Nw; = 1]

3.2.3 Second Encoder Layer

The second attention layer has 2 heads. The first
head only looks at positions in the first half of the
sequence that have a 1, and the second does the
same for the second half. Both heads attend more
to positions closer to the center of the sequence:

W2 =10 0 ¢/d 0 0 0 0 0 0 0]
WH2L=10 0 0 0 1 0 0 0 0 0
WV,2,1 _ [010><10 :|

0 .. 01
W22 =10 0 ¢/d 0 0 0 0 0 0 0
WE22=10 0 0 0 0 1 0 0 0 0]

o

010><10
w0 -1]

The results of both heads are combined and pro-
jected into dimension 11 (see Appendix A for de-
tails). The second FFNN does nothing (WH21 =
bF,Q,l — WF,2,2 — bF’2’2 — 0)

The vector at the CLS token after the residual
connection is:

2,0 _ 1

For ¢ = 1n 2, s turns out to be the following (see
Appendix A for the derivation):

1 s
§ = 5 Z (_1)11[11;1 0]22
error at w;
where C' = 2" — 1 and an error at symbol wj is
defined as those symbols in the first half of the
sequence where w; # wy,_;—1. So clearly, s = 0
iff the input is a palindrome.

3.2.4 Output Layer

The output layer selects s and uses an indicator
function as activation to determine if s = 0:

W =0 0 1]
b =0
y=1[s=0]

Note that in the worst case, the above expression
for s has a magnitude of O(3), meaning that for

large n and fixed precision floating point numbers,
s may be so small that floating point errors cause
the result to be wrong.

3.2.5 Intuition

Figure 1 outlines the intuition behind the exact
solution for PALINDROME.

First, we split the sequence into two halves.
Then we flip the order of the right half, which is
done by the positional encoding entry n — 7 — 1.
We then interpret the left half and the reversed right
half as binary numbers. This is done implicitly
through the softmax in the attention layer, where
setting ¢ = In2 converts the softmax into base 2,
and the query with the position adds the exponents
according to the character position'. Finally, sub-
tracting one from the other yields 0 iff they are the
same. For a formal derivation, see Appendix A.

sequence: 1101001]1001011

flip right half: 1101001|1101001
1101001,

subtract binary: 11010019
00000002

Figure 1: Intuition behind PALINDROME exact solution.

4 Experiments

4.1 Exact solutions

For the languages FIRST, PARITY and ONE we
ran the same experiments using the exact solutions.
Starting at n = 10 and going up to n = 10000,
in intervals of near multiples of 2. In all cases the
accuracy for the exact solutions was 1, i.e. the
custom transformers were always able to recognize
the language perfectly without training.

For PALINDROME we test all n € [1,200]. As
Figure 2 shows, the exact implementation achieves
perfect accuracy in the interval [1,37]. However,
the performance deteriorates starting from string
length n = 38 because of floating point errors,
going down to 0.5 accuracy at around n = 70.

"Note that in fact we are obtaining reverse binary numbers
where the most significant bit is the right-most digit.

0.8

0.6

0.4

Accuracy

0.2

0.0

0 25 50 75 100 125 150 175 200

String length

Figure 2: Validation accuracy of Palindrome exact trans-
former on different string lengths.

From there on our transformer performs no better
than random guessing.

4.2 Learned solutions

As in (Chiang and Cholak, 2022), we investi-
gate the learnability of the four studied languages,
FIRST, PARITY, ONE, and PALINDROME. In our
work, we define and test two main properties for
each language:

 Learnability, that is the ability of a transformer
to learn a solution for strings of fixed length.

* Generalizability, that is the ability of a trans-
former to learn a solution that allows to gener-
alize to unknown string lengths.

This distinction is proposed after observing that for
some languages, as for example ONE, transform-
ers could easily learn solutions for strings of the
same length as the training examples, but struggled
to find more general solutions that could adapt to
arbitrary input lengths.

The two properties were tested using a standard
encoder-only implementation of the original trans-
former, as we did for the exact solutions. All
the experimental results were obtained by calcu-
lating an average over 20 different runs. As in
(Chiang and Cholak, 2022), we used dpogel = 16
for learned word encodings, self-attention, and
FFNN outputs with dppny = 64. Layer normal-
ization with ¢ = 10~! was used after the residual
connections. We used PyTorch default initializa-
tion for the learned parameters and the Adam op-
timizer (Kingma and Ba, 2015) with learning rate
n = 3 x 10~%. We also do not use dropout, as
(Chiang and Cholak, 2022) observed that did not
seem to help. Moreover, we experimented with

Validation loss (bit cross-entropy)

Validation accuracy

10° 10" 102
Epochs

— 10 — 30 — 70 200 400 — 750
20 — 50 —— 100 — 300 —— 500 1000

(a) Learning of FIRST.

Validation loss (bit cross-entropy)

Validation accuracy

Epochs

— 10 — 30 — 70 200 400 — 750
20 — 50 — 100 — 300 —— 500 1000

(b) Learning of ONE.

Figure 3: Learning curves for the languages FIRST and ONE, trained on strings of different lengths for 100 epochs.

different types of positional encoding, namely po-
sitional encodings from exact solutions, FIRST and
PARITY positional encodings from (Chiang and
Cholak, 2022), and standard sinusoidal positional
encodings. Finally, we also investigated the use of
variable string length for the training examples.

The first property we tested on the four lan-
guages was learnability. Figure 3 shows the results
of these experiment for FIRST and ONE. In this
experiment, we train the transformer with different
string lengths s, 10 < s < 1000 and report the
validation loss and accuracy of the model tested on
strings of the same length. It is clear from Figure 3
that the transformer successfully learns both FIRST
and ONE, achieving both high accuracy and low
per-string cross-entropy for the two languages. We
also report the learning curves obtained for PARITY
and PALINDROME in Appendix D. Like Chiang and
Cholak (2022) and Bhattamishra et al. (2020a), we
did not manage to find a learned solution to PAR-
ITY and, as shown by Figure 8§, PALINDROME was
not learnable in our experiments either.

Since generalizability is intrinsically more dif-
ficult to achieve than learnability, as the former
requires as a necessary condition the latter, we only
tested it for languages that we proved to be learn-
able in our learnability experiments, that is FIRST
and ONE. Figure 4 shows the empirical results
obtained for FIRST. We observed that the naive
implementation of FIRST does not generalize well

to unknown string lengths (left column of Figure 4),
but this issue can be solved by scaling the attention
logits by log n, where n is the length of the train-
ing strings (right column of Figure 4). Hence, our
results consistently confirm the findings of (Chiang
and Cholak, 2022) on the same languages, proving
that log-length is effectively able to overcome the
limitation suggested by Hahn’s lemma.

Figure 5 shows the experimental results for ONE
generalizability. The left column reports the results
that were obtained training a transformer with po-
sitional encodings from our ONE exact solution,
on training examples of fixed length. It can be ob-
served that the transformer could not generalize to
longer string lengths, despite being able to effec-
tively learn solutions for strings of the same length
as the training samples. However, we discovered
that a better solution for ONE (which has perfect
accuracy when the difference between training and
test lengths is not too pronounced) can be learned
by using the exact combination of FIRST positional
encodings and variable length training samples,
with both these parameters being strictly necessary
for generalizability (right column of Figure 5).

A more in-depth analysis of the solution weights
that this particular transformer was able to recover
was attempted, but due to the high dimensionality
of the weight matrices, their dense nature, and the
complexity of the model, we could not leverage
them to obtain additional insights.

First

1.01

0.8

0.6 1

0.4

0.2

0.0

Validation loss (bit cross-entropy)

102 10°

1.01

0.8

0.6 1

0.4

Validation accuracy
k-
3

0.2

0.0

30

Validation loss (bit cross-entropy)

Validation accuracy

—— 100

First scaled

0.8

0.6

0.44

0.24

0.0

0.8

0.6 1

0.44

0.24

0.0

102 10%

Epochs

10° 10!

— 300

Figure 4: Generalizability learning curves for FIRST, trained and tested over different string lengths for 1000 epochs.
Left: Standard FIRST transformer. Right: Scaled FIRST transformer.

5 Discussion

While Bhattamishra et al. (2020b) found an exact
solution for specific context free languages using
hard attention, we are instead trying to use soft at-
tention to model the context free language PALIN-
DROME. We do in fact find a theoretical solution
that works for recognising PALINDROME using
only soft attention. However, the practical imple-
mentation has an obvious shortcoming, which is
that with fixed precision floating point numbers, it
can only recognize palindromes reliably up to a cer-
tain length (n < 37). The reason for this is that the
solution works by effectively interpreting the left
and right side into binary/ reverse binary representa-
tion, respectively, whose value grows exponentially
with n, meaning the normalisation constant of the
softmax in the attention layer grows exponentially
too, resulting in numbers of magnitude O(3-) (see
Appendix C for more details). This is necessary
when using soft attention, since all positions by def-
inition contribute to the attention output, just with
different weights. So the symbols at each position
need to be “tagged” by the position, which requires
a type of unique weighting which the binary coding
provides.

6 Conclusion

In response to the limitations postulated by Hahn
(2020), Chiang and Cholak (2022) showed that
there exist transformers that can recognize PAR-
ITY with perfect accuracy. In this work, we have
verified their results experimentally, finding that
the exact solutions do indeed work as described,
but that PARITY cannot be learned. We then ex-
tended their results by deriving custom transformer
weights that, at least in in theory, can recognize
instances of the regular language ONE and the
context free language PALINDROME for arbitrary
input sizes n. In practice, however, the solution
for PALINDROME does not generalise to longer se-
quences due to floating point precision errors. Chi-
ang and Cholak (2022) also showed that for FIRST
and PARITY it is possible to achieve cross-entropy
arbitrarily close to zero through layer normaliza-
tion. An interesting avenue for future work would
be to investigate whether the same result can be
achieved for PALINDROME and ONE. Our experi-
ment code can be found on Github?.

Zhttps://github.com/giacomocamposampiero/palindrome-
transformer

https://github.com/giacomocamposampiero/palindrome-transformer
https://github.com/giacomocamposampiero/palindrome-transformer

1.04

0.8 1

0.6 9

0.4 4

0.2 4

0.0 4

Validation loss (bit cross-entropy)

T T T T
10° 10t 10? 103

1.0
0.8 1
064:::::<:::;7/A\AﬁfM%%*ﬂﬂﬂﬁ##ﬁg::“ﬂ:::::
0.4 1

0.2 4

Validation accuracy

0.0 4

100 10t 102 10°
Epochs

— 10 30

— 100

0.8

0.6

0.44

0.24

0.0

T T T T
10° 10! 102 103

0.8

NP NANA NS A bty Aot bt

0.6 -

0.44

0.24

0.0

100 10! 102 10°
Epochs

_— 300‘

Figure 5: Generalizability learning curves for ONE, trained and tested over different string lengths for 1000 epochs.
Left: Standard ONE transformer. Right: ONE transformer with First positional embeddings.

References

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. 2020a.
On the ability and limitations of transformers to rec-
ognize formal languages. In EMNLP.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020b. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7096-7116, Online. Association for Computational
Linguistics.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7654-7664, Dublin, Ireland. Association
for Computational Linguistics.

F.A. Gers and E. Schmidhuber. 2001. Lstm recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333-1340.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156—
171.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
rnns for language recognition. In ACL.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual
attention.

https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1502.03044
https://doi.org/10.48550/ARXIV.1502.03044
https://doi.org/10.48550/ARXIV.1502.03044

A Correctness of PALINDROME

In the following we will derive an expression for s
as referenced in Section 3.2.3.

As a reminder, the scaled dot-product attention
is given by

K
Att(q, K, V) = V Tsoftmax —3

Vd

where for position O (at the CLS token) we have:

>0 = ¢*?0 = eVd x I[w; = CLS] = eVd

and the keys and values at position 7 are:

To simplify the notation, let 7 := n —i — 1. Then
s, which is at position 11 of the output of the last
attention layer at position 0 can be written as:

Z Att (qQ,h,O’KQ,h,VZh) 1 alo
hel,2

K21g21.0
= (V2 Tsoftmax (q)
Vd 11

K22g22.0
+ (V??%) Tsoftmax (q) +a;?
11

Vd

Plugging in the values from above and only re-
garding the 11-th dimension where ai’lo = 0, this
becomes:

s=» Tw=1Ai< 2] nexlp(cz)
i=0 Z]—O exp(cj)
n—1
— S Mwi =180 > 251 neflp[cz] .
1252
= 3 Iw; =1 nexlp(cz)
— exp|ci]
= > Twi =1
et > ico exples]
=51
n—1
75)
S = 1)
P > i—o exp(cj)
n—1
75)
B Ifw; = 1] exp(ci)

=0
1 s
= 3 (el
w; w3

Where in the last step, we use that ¢ = In 2.

Trivially, if w is a palindrome, the above is 0
because the sum vanishes. Conversely, since 2 is
the basis of the binary numeral system, it is easy to
see that if w is not a palindrome, s cannot be 0 as
there is no way to sum powers of 2 with coefficients
< 1to get a larger power of 2.

Note that, for even lengths n, {i|i < %71} and
{ili > 251} are disjoint, while for odd n they both
contain the center index 7 = "T_l However, when
Kubtracting both sides, the term arising from the
center position conveniently vanishes.

Note also that for the above calculations we
require the sequence to be symmetric including
tags such as CLS and EOS. This is because other-
wise the sums from the two halves of the sequence
would have different softmax normalisation con-
stants in the derivation above. This is the reason
an EOS tag was added to sequences for the PALIN-
DROME exact solution.

B Dataset Details
B.1 FIRST & PARITY

FIRST = {w € ¥* | wy =1}
PARITY = {w € ¥* | w has an odd number of 1s}

The data generation for FIRST and PARITY is
implemented in the same way as in Chiang and
Cholak (2022). For a given n we create a se-
quence of length n containing {0, 1} uniformly
at random and prepend a CLS token. Then the
label is assigned depending on whether the result-
ing sequence is in the language or not. This is
a reasonable method of generating data for these
regular languages as a uniform sequence of {0, 1}
has a 50% chance of being in either language and
contains all inputs.

B.2 ONE

ONE = {w € ¥* | w contains exactly one 1}

As it turns out, the method of generating sequences
uniformly at random as above is ill-suited to our
newly added languages ONE and PALINDROME.
This is because generating a sequence uniformly
at random for ONE would result in very few exam-
ples that would belong to the language. Therefore
we decided on fixing the number of ones in the
sequence according to a Poission distribution with
A = 1.5 (see Figure 6) and then selecting their
positions uniformly at random. This results in a
good percentage of examples which are in the lan-
guage but also includes examples with multiple
ones, where the likelihood of larger numbers of
ones is ever decreasing.

0.30
)

0.20
1

|
L]
r

Figure 6: Poisson Distribution with A = 1.5
(https://www.est.uc3m.es)

B.3 PALINDROME

PALINDROME = {w € ¥* | w is palindrome }

The same issue arises for PALINDROME with gen-
erating sequences uniformly at random, since it is
extremely unlikely for a random sequence of ones
and zeros to be a palindrome. Therefore, we use
the following strategy:

For a specific n we generate a uniform random
sequence of length | 7 |. If n is even, we just con-
catenate the reverse of the sequence to itself. If
n is odd, we additionally insert another random
symbol of the language between the sequence and
its reversal. This results in sequences which are in
the language PALINDROME. As palindromes are
so rare, arbitrary sequences for non-palindromes
would make up almost all of the training data, mak-
ing it even harder for a transformer to learn the lan-
guage. Hence we instead decided that for counter
examples we create palindromic sequences, and
then just flip any one of the characters (except the
middle one for odd n). This results in negative
examples that are very similar to the positive ones,
with the fractional difference decreasing linearly
with the sequence length.

C Float Precision and PALINDROME

Here we give a short demonstration of why our
exact solution for PALINDROME does not work for
arbitrarily large sequence lengths n. Floating point
precision errors happen when fixed precision float-
ing point numbers are used for calculations, as is
the case for PyTorch. This is because floating point
numbers are represented in scientific notation, with
a number between (1 and 10) with a fixed num-
ber of decimal places, and a factor of the order of
magnitude. When summing numbers of different
orders of magnitude, the resulting number will in-
clude all the decimal places of the larger number,
but fewer (or even none) of the decimal places of
the smaller number. For illustration, assume we
have 5 significant bits for the first part. Then the
following sum will neglect the second summand:

1.2345 x 10% 4 6.7890 x 10° = 123456789
~ 1.2345 x 108
This type of issue also causes problems for
our exact PALINDROME implementation as we

demonstrate with a small piece of sample code
(floating_point_error.py). The sample creates

http://www.est.uc3m.es/icascos/eng/probability_notes/discrete-random-variables.html

a tensor with a singular floating point number and
then sequentially calculates

n

9 0 g
Z_Qn-l—l_l +Z2n+1 1
=N

1=0

Similarly to how our exact solution calculates the
value s. Here n represents the length of the se-
quence, and the summation should clearly be 0.
However, because floating point numbers in Py-
Torch have fixed number of significant bits, we get
inaccurate results for large n where the summands
with smaller powers of i will not contribute to the
sum. Additionally, the order of summation also
gives different results. Both contribute to the fact
that for large n we get both type 1 and type 2 errors
for our exact solution.

D Learning curves for ONE,
PALINDROME and PARITY

Figures 7 and 8 show the learning curves for the
PARITY and PALINDROME languages, respectively.

0.715

0.710

0.705

0.700

0.695

0.690

Validation loss (bit cross-entropy)

0.685

Validation accuracy

— 10 — 30 — 70

—— 200 —— 400 — 750
~—— 20 — 50 —— 100 —— 300 -—— 500 —— 1000

Figure 7: Learning of PARITY, trained on different
string lengths for 100 epochs..

0.710

0.705

0.700

0.695

0.690

Validation loss (bit cross-entropy)

°
>
8
3

Validation accuracy

Epochs

— 10 — 30 —— 70 —— 200 -~ 400 — 750
~—— 20 — 50 —— 100 —— 300 —— 500 —— 1000

Figure 8: Learning of PALINDROME, trained on differ-
ent string lengths for 100 epochs..

