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Abstract

Fallacies are instances of faulty reasoning that
can lead to reaching the wrong conclusion
from correct premises. Detecting fallacies is
a difficult task even for humans, so an auto-
matic method of identifying them, while hard
to achieve, would be of great use. Just as
spell checkers have been assisting writers for
decades in avoiding typographical errors, a fal-
lacy checker could aid in recognizing and avoid-
ing fallacious arguments and thereby make dis-
course more rational and more instructive. This
work introduces the task of automatic fallacy
detection, as well as a custom dataset for train-
ing a binary classifier to distinguish sound rea-
soning arguments from fallacious arguments.
10,364 statements labeled as either fallacious
or non fallacious were aggregated from mul-
tiple sources to create a balanced dataset. A
classifier that we trained on the training subset
of this data achieves an accuracy of 89% on the
test set.1

1 Introduction

A fallacy is "a mistake in reasoning [...] that occurs
with some frequency in real arguments and which is
characteristically deceptive" (Govier, 1987). While
there is no unified theory of fallacies, a number
of categorization systems have been developed
(van Eemeren et al., 2002; Tindale, 2007). For
instance, Damer (2008) classifies fallacies by the
criterion for a good argument they violate, divid-
ing them into (1) structural integrity, (2) premise
relevance (3) premise acceptability (4) sufficiency
of the premise to support the conclusion, and (5)
defensibility of the argument against counterargu-
ments. Of these, (1) and (4) depend on the logical
validity of a statement (whether the premise en-
tails the hypothesis) and thus can conceivably be
addressed by techniques such as Natural Language
Inference (NLI) (Bowman et al., 2015; Williams

1Our code and data are at https://github.com/xxx/.

et al., 2018), while the others also make demands
about the truth and nature of the premises as well as
the argument’s meaning in context and thus require
(at least) additional domain knowledge.

Recent works have begun tackling the task of
fallacy classification, i.e. training a classification
model to differentiate between different types of
fallacies Alhindi et al. (2022); Jin et al. (2022).

In the case of Jin et al. (2022), combining tech-
niques such as the Structure Aware Hypothesis (Yin
et al., 2019) from (NLI) and large transformer lan-
guage models. For this line of work, argument
mining (Lawrence and Reed, 2020) is used as a
preprocessing step to extract the underlying logical
form of the text and use the resulting features to
train a classifier.

Notably, the datasets introduced by Jin et al.
(2022), contain only fallacious statements, mean-
ing they only allow classification of the fallacy type
under the assumption that the argument is a fallacy.

Our work aims to go beyond this by addressing
the task of detecting the presence of a fallacy in the
first place. Our contributions can be summarised
as follows: We introduce the task of fallacy de-
tection, i.e. the binary classification of arguments
into fallacies and non-fallacies. We create a dataset
containing fallacies and valid arguments combin-
ing artificial and real-world examples we collect
from an online discussion forum. Finally, we train
classifiers that successfully differentiate between
fallacies and non-fallacies.

2 Datasets

One of our main contributions is creating a high
quality dataset that can be used to train a classi-
fier to perform the task of fallacy detection via
binary classification. In the following, we outline
the makeup of this dataset.

https://github.com/xxx/


2.1 LOGICVALID and LOGICCLIMATEVALID

In order to be able use the two datasets above for
fallacy detection, we extended them by creating
contrasting examples for each of them.

Inspired by works by Agarwal et al. (2022) and
Boschi et al. (2019), we sourced most of our own
data from Kialo.2 Kialo is an online discussion
platform where users can write, respond to, and
rate arguments as part of debates on a variety of
topics.

We decided on Kialo for a large part of our data
sourcing because it contains arguments from actual
debates, i.e. real exchanges between people, en-
abling us to train and validate our models on more
realistic examples than the artificial statement’s
from LOGIC.

One source of a limited number of already down-
loaded Kialo discussions was created by Agarwal
et al. (2022). It has the advantage that it also con-
tains scraped quality ratings, given by Kialo users
to each statement, which we use as a proxy for
logical validity, keeping only the best rated ones.

Using this rating and some filtering, we selected
the 2,200 highest rated arguments from the whole
corpus of arguments for the LOGICVALID dataset,
to be used as contrast against the LOGIC fallacies,
and 721 arguments that are climate related for the
LOGICCLIMATEVALID dataset, to be used against
the LOGICCLIMATE fallacies dataset.

The filtering was necessary to address the fact
that many arguments were too short and thus did
not make for good contrasting examples. To rem-
edy this, we only selected longer sentences by fil-
tering the number of punctuation marks (specifi-
cally, commas and full stops) in each argument.
We also removed arguments that contained norma-
tive words such as “should” which we assumed to
be used in normative statements such as opinions,
rather than logical statements.

To identify climate related arguments from the
corpus for LOGICCLIMATEVALID, we selected
them by looking for keywords, including “climate
change,” “emissions” and “global warming.” As
both climate and non climate related counterexam-
ples were taken from the same corpus, there was
some overlap between the two datasets, however,
the number of duplicates is a single digit number.

2https://www.kialo.com/

2.2 KIALO and KIALOVALID

Finally, the last two datasets we sourced from Kialo
ourselves to have a larger amount of discussions
to use, since the corpus from Agarwal et al. (2022)
was collected on 28 January 2020 and hence has
fewer content. As a comparison, they collected
1,560 discussion threads, whereas we collected
2,622.

The hierarchical structure of the debates on
Kialo allows us to use one user’s response to an-
other user’s argument as a label for that argument.
For instance, one user might make the following
statement (taken from our data):

“Solipsism has been proven to be non-
sensical by some of the greatest minds
in history. As such, discussing it is simi-
larly non-sensical.”

to which another user replies:

“An argument from authority is [...] a
fallacy”

Given that the parent statement was thus marked
as a fallacy by another user, we can use it as a
positive example in our dataset. Similarly, to find
negative counterexamples, we can choose one of
the fallacious argument’s siblings in the discussion
tree, and if it has no annotations claiming it is a
fallacy we assume it is valid.

To get enough discussions from Kialo, we down-
loaded all discussions that were linked on the ex-
plore page through a list of 2,152 tags, via the
download API endpoint.

We then parsed these discussions into a suitable
custom data structure we crated for kialo discus-
sion data that preserves the hierarchy and allows
efficient look-ups of claims, their parents, children,
siblings, and meta data.

Next, we extracted statements of interest for the
KIALO dataset containing fallacies by extracting
all statements whose children statements contain
at least one keyword from a list of 35 which corre-
spond to different type of fallacies.

As we did not fully trust the users’ assessment
nor our extraction strategy (for instance the sen-
tence “The above is not a fallacy” would result in a
fallacy label because it contains the word “fallacy”
) we manually went through the KIALO fallacies
and re-labelled them as fallacy or non-fallacy.

For the contrasting dataset, KIALOVALID, we
extract counterexamples by selecting siblings of
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the previously found fallacies which themselves
are not marked as fallacies by users. The reason
for using siblings is to get counterexamples that are
topically close to the fallacious examples.

Finally we cleaned both the KIALO and KIALO-
VALID datasets, removing unsuitable examples as
outlined in section 2.1. Also we removed links and
newlines within arguments in all the datasets.

2.3 Dataset overview
In total, we collected 10,364 data points, with 4,376
fallacies and 5,988 non-fallacies. Table 1 shows
the size of each dataset, with each fallacy dataset
paired with its corresponding contrast dataset.

Domain Fallacious Claims Valid Claims
General (LOGIC) 2,449 (Jin et al., 2022) 2,200 (Ours)
Climate (LOGICCLIMATE) 1,079 (Jin et al., 2022) 721 (Ours)
Debates (KIALO) 848 (Ours) 3,067 (Ours)

Table 1: Dataset overview. Our dataset consists of fal-
lacious and valid claims from three domains, general,
climate, and debates.

3 Modeling techniques

Like Jin et al. (2022), our approach for modeling
the classifier utilises Natural Language Inference
(NLI) models (Yin et al., 2019). NLI models can
determine whether a given hypothesis “follows”
from a specific premise (entailment), “unfollows”
(contradiction) or whether they are “undetermined”
(neutral) with regard to each other. This allows us
to construct zero-shot classifiers since the task we
are trying to solve is answering a question that can
be formulated as a hypothesis.

Furthermore, it can also useful for pretraining
a model, as more binary questions can be asked
without changing the structure of the model.

For obtaining the logical structure of the state-
ments, we used the Structure Aware Premise mod-
ule from Jin et al. (2022), which makes the model
attend to the word order and their logical structure.
We defer to section 3 of their paper for the details.

As the hypothesis, we used the statement “This
statement is a fallacy.” Depending on whether the
model predicts entailment or contradiction, our
classifier selects the output label (fallacy or non-
fallacy, respectively).

One thing that is important to mention is that,
in our model, we discarded the neutral case as we
are working in a binary classification setting, since
an argument is either a fallacy or it is not. This

means that both contradiction and undetermined
entailment count as non-fallacy for our purposes.

To create our classifier, we fine-tuned four dif-
ferent transformer models: BERT (Devlin et al.,
2018), Roberta (Liu et al., 2019), DeBERTa small
(He et al., 2021) and Electra (Clark et al., 2020).
The models were taken from and fine tuned using
Huggingface’s transformer libraries (Wolf et al.,
2019). We will compare the results obtained with
each model in the following section.

4 Experiments

We are interested in testing how accurately a clas-
sifier can predict (binary) fallaciousness of state-
ments when trained on our data. Given that our
data comes from multiple sources, we used differ-
ent ways of splitting the data into train, validation,
and test sets, taking the provenance of the different
subsets of the dataset into account.

To this end we designed 4 experiments. The first,
which yields our main results, uses all of the data
we acquired and splits it into training, validation
and a holdout test set.

For the second experiment, we trained the differ-
ent classifier models on all data unrelated to climate
change, and then tested the ability to generalise to
the unseen climate related domain. Finally, the
last two experiments examine how well the model
trains on the fallacies and counterexamples we ob-
tained by scraping real world sources, compared to
the Logic (Jin et al., 2022) dataset (and the same
counterexamples). For each of these experiments a
quantitative description of the dataset is shown in
table 2.

4.1 Main results

The combination of all the data results in a dataset
of 10,364 arguments, of which 4,376 are fallacious.
We split this data into training, validation and test-
ing sets, resulting in 8,291 arguments for training,
1,036 for validation and 1,037 for testing. On this
data we tested two zero shot classifiers trained on
MNLI tasks, namely, Bart large (Lewis et al., 2020)
and Roberta large (Liu et al., 2019). Then, we fine-
tuned BERT (Devlin et al., 2018) and performed
an ablation study to see whether using Structure-
Aware Premises as in (Jin et al., 2022) was a good
idea. We also fine-tuned 3 other transformer mod-
els, Roberta (Liu et al., 2019), DeBERTa small (He
et al., 2021) and Electra (Clark et al., 2020).

The results of these experiments, with macro av-



# Valid # Fallacious

Combined
data

Train 4804 3487
Valid 572 464
Test 612 425

Climate
test

Train 4201 2650
Valid 1066 647
Test 721 1079

Logic
climate
test

Train 2466 1946
Valid 601 503
Test 721 1079

Logic
reduced
climate test

Train 2440 693
Valid 627 157
Test 721 1079

Kialo
climate
test

Train 2441 691
Valid 626 157
Test 721 1079

Table 2: Description of the dataset splits used in the
experiments

erages, are shown in table 3. As we can see, the
zero shot classifiers perform barely better than a
random classifier. This is expected as classifying
arguments as fallacies is a challenging task, even
for humans. However, fine tuning models drasti-
cally improves their performance over zero shot
models. Indeed, BERT achieves an accuracy of
87%, which is surprisingly high given the complex-
ity of the task. The ablation study on the inputs
shows that it performs better when only the hypoth-
esis is used. This is expected as fallacies rely not
only on the structure of the arguments but also on
the semantics of the words themselves. Masking
the words removes crucial information, especially
for real world online arguments that do not have
as clearly fallacious structure as textbook exam-
ples. We thus decided to do all of the following
experiments with the unmasked arguments and the
hypothesis as inputs.

We find that, while the pure fine tuned
BERT models using structure aware preprocessing
achieve accuracy and F1 scores in the high eighty
percent range, using more specialised fine tuning
approaches and architectures such as Roberta and
deBERTa perform best out of all models, with 89%
accuracy and macro F1.

The fact that the models performs well in the
same training and testing distribution shows that
with a larger dataset these models could indeed be
used to effectively detect fallacious online argu-
ments.

P R F1 Acc
Bart-MNLI 51 51 51 53
Roberta-MNLI 52 52 52 54
BERT 87 85 86 87
BERT + SA P 86 84 85 86
BERT + Hypo 89 85 86 87
BERT + SA P + Hypo 87 85 86 87
Electra 88 86 87 87
RoBERTa 90.0 88.1 88.8 89.4
DeBERTa 89.9 87.9 88.5 89.0

Table 3: Macro average of model performance on the
combined dataset

4.2 Generalizing to unseen domains
Following Jin et al. (2022), we also tested the mod-
els on out of domain data. For that, we trained
models with all of the arguments we gathered that
were unrelated to climate and tested only on cli-
mate related arguments. The test set consists of
1,079 fallacies and 721 valid arguments. We again
fine tuned BERT, Roberta, deBERTa and Electra.
The results of this experiment are shown in table 4.
All of the metrics drop in comparison to the values
reported in the previous experiment, meaning that
domain distribution does matter for classification
accuracy. This is not unexpected since classify-
ing fallacies heavily relies on knowledge about the
background and context of the arguments being
classified. Moreover, the writing style in journal ar-
ticles from which the LogicClimate fallacies come
from are very distinct from the Kialo arguments
and the fallacies in the Logic corpus, which were
authored by anyone interested in taking part rather
than trained journalists. These results show the im-
portance of having a dataset which covers as many
different subjects and domains as possible.

P R F1 Acc
BERT 72 67 61 62
Electra 71 65 57 58
RoBERTa 71 65 58 59
DeBERTa 70 63 55 57

Table 4: Macro average of model performance in % on
the climate test set

4.3 Fallacy data comparison
As pointed out above, the fallacies we collected on
kialo.com (KIALO) are different from the fallacies
in the LOGIC dataset. Therefore, we wanted to



see whether this has ramifications in how well the
models can train on them. We did this by creating
two training sets, the first comprising of the scraped
(KIALO) fallacies and scraped counterexamples
(KIALOVALID), the second with LOGIC fallacies
and KIALOVALID as well (so the training sets only
differ in their fallacies).

We then tested the models on the climate test
set as in the previous experiment. The results are
shown in table 5. We can see that the model trained
on LOGIC has an accuracy of 68%, so it performs
better than the one trained on KIALO, there the
accuracy is 59%, on the same test set. However
LOGIC also has a larger number of fallacies (2449
vs. 848) so this was expected.

To have a fair comparison, therefore, we reduced
the LOGIC dataset to have roughly the same num-
ber of fallacies as KIALO, and the resulting accu-
racy is in fact 1% higher for Kialo than LOGIC.

This seems to imply that our scraped real-world
data is similarly effective in training the classifier as
the textbook logical fallacies, which is surprising
since the real-world examples are much noisier
and were also harder to validate for us during data
cleaning.

P R F1 Acc
Kialo 60 60 59 59
Logic 74 72 68 68
Logic reduced 71 64 56 58

Table 5: Comparison of our fallacies with Logic falla-
cies when testing on climate data, using macro average

5 Future Work

As we previously mentioned, an extension of our
work could be to combine our fallacy detection
with fallacy classification to get a complete end
to end pipeline. This would lend more credence
to the models judgement of statements as fallacies
because one could understand what type of fallacy
exactly the model thinks it sees.

Additionally, the dataset could be changed to
include non-arguments. As it is now, the no-fallacy
class mostly contains valid arguments, so it is not
certain how the classifier would work on sentences
containing no logical argument at all. Alternatively,
another binary classifier that does argument detec-
tion could be appended in the pipeline before the
fallacy detection step.

The complete pipeline could then be made avail-
able to the public through the use of software or
web extensions.

6 Conclusion

We have introduced the task of fallacy detection as
a binary classification task. For this, we created
a custom dataset consisting of 10,364 statements
labeled as either fallacious or non fallacious from
synthetic and real-world sources to create a roughly
balanced dataset which can be used to train a clas-
sifier on a training subset of this data. We then fine
tuned some state of the art language models on our
data and achieved an accuracy of 89 percent on the
hold out test set.

Limitations

The main limitation in our work is that the data
we have comes from different sources (some exam-
ples are contrived and others more realistic), and
each source had its own criteria for classification
and its own data cleaning process. As we are not
linguists nor logicians, our judgement in assuring
correctness in the fallacy examples is imperfect.
Furthermore, after we had collected our data and
manually cleaned it, it was no longer perfectly bal-
anced. We attempted to create balanced data rather
than reflecting the (very domain dependent) preva-
lence of fallacies in real world text, which limits
generalizability of the results.

Also, since our main focus was on the proof of
concept and the creation of the dataset, the com-
binations of models, hyperparameters, and prepro-
cessing steps we tested are by no means compre-
hensive.

Ethical Considerations

The data introduced in this work stems from pub-
licly available sources, and claims used do not con-
tain information about claim authors, or messages
sent in the discussion meaning there are no privacy
concerns. The potential use of this work is to help
humans tackle misinformation by labelling state-
ments as potentially fallacious. It is not intended
to be used on its own to determine the soundness
of arguments without human supervision.
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